姓名:周清 | 性别:男 | 職務: | |
職稱:副教授 | 博導/碩導:碩導 | 辦公室:15-445 | |
研究領域:輕量化夾層結構的制造和塑性變形;高性能醫用植入钛的制備和應用;塑性變形機理。 | |||
電話:025-84892570 | Email:anzhouqing@nuaa.edu.cn |
個人簡介:
周清,男,1970年出生,1991年和1997年分别獲得大連理工大學金屬材料與熱處理專業學士和碩士學位。1997-2001年日本文部省國費留學生,2001年獲得日本長岡技術科學大學博士(工學)學位,20022005年日本茨城大學工學部機械工學部研究員,與伊藤吾朗教授合作從事應用于醫用生物材料的beta钛合金的微觀組織改進和高溫變形機理的研究,2005年8月開始回國工作。從事于塑性加工的教學和科研工作。對钛合金熱變形及其微觀組織,高溫變形的尺度效應等領域有較深入的研究。發表論文近30篇,其中SCI論文15篇。教育部學位與研究生教育評估專家。
學術成果:
[1] 鄧竹君,周清,陳明和,陳文傑:應用于醫學的ECAP處理Ti及Ti合金的研究現狀,材料導報, 25(2),2011,116-120.
[2] 張方哲,周清,童國權,陳明和,陶克梅:生物醫用Ti29Nb13Ta5Zr合金的超塑性行為,稀有金屬材料與工程, 40(2),2011,231-235.
[3] 陳文傑,周清,鄧竹君,張方哲:基于Normalized C&L準則的ECAP裂紋萌生趨勢的數值模拟,鍛壓技術,35(5),2010,159-163.
[4] 張方哲,周清,陳文傑,鄭志豪:Ti-15-3 在beta相區的兩段超塑性行為研究,熱加工工藝, 39(2), 2010,17-20.
[5] 朱浩,周清:變形條件對AZ31鎂合金塑性的影響,機械工程材料, 33(12),2009, 39-42.
[6] 周清,Itoh Goroh, 孟祥康:高溫變形尺度效應及其微觀結構,南京大學學報,45(2), 2009,198-202.
[7] 周清, 伊藤吾朗:晶粒尺寸和膜厚度對介觀尺度鋁箔蠕變變形的影響,金屬學報, 44(3), 2008, 336-340.
[8] Qing Zhou, Goroh Itoh and Mitsuo Niinomi: Mechanical properties and high temperature deformation of beta titanium alloys, Mater Sci Forum, 546-549, 2007, 1379-1382.
[9] Tsing (Qing) Zhou, Goroh Itoh, Yoshinobu Motohashi and Mitsuo Niinomi: Microstructural modification in a beta titanium alloy for implant applications, Mater Trans, 47(1), 2006, 90-95.
[10] ZHOU Qing, G. Itoh, Y. Motohash: Tensile properties of AZ31 sheet/bar and effects of texture, Tran Nonferrous Met Soc China 16, 2006, s1741-s1745.
[11] Goroh Itoh, Hisashi Hasegawa, Tsing (Qing) Zhou, Yoshinobu Motohashi and Mitsuo Niinomi: Microstructure change of beta type titanium alloy by intense plastic deformation, Mater Sci Forum, 503-504, 2006, 705-710.
[12] Qing Zhou, K. Tanaka and G. Itoh: Deformation of aluminum thin foils under uniaxial tensile stress at elevated temperatures, J Mater Sci Letters, 21(12), 2002, 915 -916.
[13] Q. Zhou, Z.Y. Ma, J. Zhao, J. Bi, S.J. Zhu, F.G. Wang: Creep Deformation and Fracture of Dispersoids and SiC Particulates Reinforced Al Composites, Acta Metall Sinica 34(1),1998,107-112.
[14] Q. Zhou and G. Itoh: Creep behavior of aluminum alloy foils for microelectronic circuits, Key Eng Mater, 171-174, (2000), 633-638.
[15] S.J. Zhu, L.M. Peng, Q. Zhou, Z.Y. Ma, K. Kuchařová and J. Čadek: Creep Behavior of Aluminum Strengthened by Fine Aluminum Carbide Particles and Reinforced by Silicon Carbide Particulates-DS Al–SiC:Al4C3 Composites, Mater Sci Eng, A282(4), 2000, 273–284.
[16] Q. Zhou, G. Itoh and T. Yamashita: Creep mechanism of aluminum alloy thin foils, Thin Solid Films, 375(1-2), 2000, 104-108.
[17] Q. Zhou, S. J. Zhu, J. Zhao, Z. Y. Ma and J. Bi: Creep deformation behavior of SiC particulate-reinforced Al–C–O composite, J Mater Sci, 33(13), 1998, 3433-3436.
[18] Q. Zhou, G. Itoh and T. Yamashita: Further study on the effects of specimen thickness and grain size on the creep behavior of aluminum alloy foils, Mater. Trans. JIM, 40(5), 1999, 443-446.
承擔項目:
[1] 背壓ECAP處理納米晶醫用植入純钛及其性能優化,江蘇省自然科學基金,項目編号:BK2011736, 2011~2014